Series ED

Oscillator/Demodulator

The Series ED Oscillator/Demodulator is designed to simplify installation for 35 mm DIN Rail and Panel Mount applications. It provides DC-in/DC-out operation for AC LVDTs and is internally regulated for additional stability of the output signal. Optimized for 3 kHz or 7 kHz performance. A variety of voltage outputs are available as well as 4-20 mA; all with zero offset and span adjustment.

KEY FEATURES

Works with 5 and 6 wire LVDTs
DC Voltage Output

Internally Regulated

Small Size and Low Cost

INDICATOR SPECIFICATIONS

	(3KHz Oscillator @ 5.0 +/- .75, Any Output Phase Angle) *					(7KHz Oscillator @ 5.0 +/- . 75 VRMS Output Phase >10 Degrees)*					(7KHz Oscillator @ 5.0 +/- . 75 VRMS Output Phase <10 Degrees) *				
MODEL \#	$\begin{aligned} & \text { ED110- } \\ & \text { 03-55S } \end{aligned}$	$\begin{aligned} & \text { ED110- } \\ & \text { 03-11S } \end{aligned}$	$\begin{aligned} & \text { ED110- } \\ & \text { 03-P1S } \end{aligned}$	$\begin{aligned} & \text { ED110- } \\ & \text { 03-N1S } \end{aligned}$	$\begin{aligned} & \text { ED110- } \\ & \text { 03-42S } \end{aligned}$	$\begin{aligned} & \text { ED210- } \\ & \text { 07-55S } \end{aligned}$	$\begin{aligned} & \text { ED210- } \\ & \text { 07-11S } \end{aligned}$	$\begin{aligned} & \text { ED210- } \\ & \text { 07-P1S } \end{aligned}$	$\begin{aligned} & \text { ED210- } \\ & \text { 07-N1S } \end{aligned}$	$\begin{aligned} & \text { ED210- } \\ & 07-42 S \end{aligned}$	$\begin{aligned} & \text { ED310- } \\ & \text { 07-55S } \end{aligned}$	$\begin{aligned} & \text { ED310- } \\ & \text { 07-11S } \end{aligned}$	$\begin{aligned} & \text { ED310- } \\ & \text { 07-P1S } \end{aligned}$	$\begin{aligned} & \text { ED310- } \\ & \text { 07-N1S } \end{aligned}$	$\begin{aligned} & \text { ED310- } \\ & 07-42 S \end{aligned}$
INPUT VOLTAGE V DC	22 TO 30 VDC														
INPUT CURRENT ma	$100 \mathrm{~mA}+\mathrm{XDCR}$														
Non Linearity \%	.05\%														
OUTPUT Z Ohms Nominal	5Ω				$>1 G \Omega$	5Ω				>1G Ω	5Ω				$>1 G \Omega$
OUTPUT I +/- ma	3				N/A	3				N/A	3				N/A
FREQ RESPONSE -3 dB Hz	500 Hz					1000 Hz									
TEMP. OPER. DEG. F	$+32^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C} \mathrm{TO} 70^{\circ} \mathrm{C}\right)$														
TEMP. STORAGE DEG. F	$-67{ }^{\circ} \mathrm{F}$ to $+257^{\circ} \mathrm{F}\left(-55^{\circ} \mathrm{C}\right.$ T0 $\left.125^{\circ} \mathrm{C}\right)$														
WIRE TERMINATION	UP TO 14 AWG.														
ZERO OFFSET ADJ. MIN.	$\pm .04 \mathrm{VDC}$				1.2 mA	$\pm .04 \mathrm{VDC}$				1.2 mA	$\pm .04 \mathrm{VDC}$				1.2 mA
OUTPUT RIPPLE MAX.	. 015 V RMS				$\begin{gathered} .024 \mathrm{~mA} \\ \text { RMS } \end{gathered}$. 015 V RMS				$.024 \text { mA }$ RMS	. 015 V RMS				$.024 \text { mA }$ RMS
OUTPUT DC ** NOMINAL ADJUSTABLE	$\pm 5 \mathrm{VDC}$	$\begin{array}{r} \pm 10 \\ \pm \end{array}$	$\begin{aligned} & 0 \text { TO } \\ & +10 \\ & \text { VDC } \end{aligned}$	$\begin{gathered} 0 \text { TO -10 } \\ \text { VDC } \end{gathered}$	$\begin{gathered} 4 \text { TO } 20 \\ \mathrm{~mA} \end{gathered}$	$\pm 5 \mathrm{VDC}$	$\begin{aligned} & \pm 10 \\ & \text { VDC } \end{aligned}$	$\begin{aligned} & 0 \text { TO } \\ & +10 \\ & \text { VDC } \end{aligned}$	$\begin{gathered} 0 \text { TO -10 } \\ \text { VDC } \end{gathered}$	$\begin{gathered} 4 \text { TO } 20 \\ \mathrm{~mA} \end{gathered}$	$\pm 5 \mathrm{VDC}$	$\begin{aligned} & \pm 10 \\ & \text { VDC } \end{aligned}$	$\begin{aligned} & 0 \text { TO } \\ & +10 \\ & \text { VDC } \end{aligned}$	$\begin{gathered} 0 \text { TO -10 } \\ \text { VDC } \end{gathered}$	$\begin{gathered} 4 \text { TO } 20 \\ \mathrm{~mA} \end{gathered}$
OUTPUT LOAD LIMITS OHMS					$\begin{aligned} & 5 \Omega \text { TO } \\ & 400 \Omega \end{aligned}$					$\begin{aligned} & 5 \Omega T 0 \\ & 400 \Omega \end{aligned}$					$\begin{aligned} & 5 \Omega \text { TO } \\ & 400 \Omega \end{aligned}$

* Oscillator output voltage adjusted via span adjustment potentiometer.
* Oscillator output current operates into a 100 ohm load with less than 0.25% Distortion.
** Output voltage and or current determined when using transducer whose sensitivity is $0.500 \mathrm{~V} / \mathrm{v}+/-10 \%$ at both ends of stroke Adjusted via the span control potentiometer.
*** Output temperature coefficient for voltage output din rail series + - $-(.01 \%$ Of output $+/-.00025 \mathrm{~V} /$ deg.F)
*** Output temperature coefficient for current output din rail series $+/-(.008 \%$ Of Ivdt stroke +.00122 Ma)
$* * * *$ Output polarity, when connected as shown the output voltage will become more positive as the core moves towards the lead end.
Polarity may be reversed by interchanging connections to pins \#7 and 9

MECHANICAL OUTLINE

BLOCK DIAGRAM

