MODEL 1003 TRANSDUCER INDICATOR

INSTRUCTION MANUAL

- TABLE OF CONTENTS •

Introduction
Front Panel Features pg. 3
QUICK START pg. 4Installation
Mounting pg. 5
Connectors pg. 5
DC-DC Transducer Wiring
Connector J1 Pin-out pg. 6
DC-DC Transducer Board Setup pg. 7
DC-DC Transducer Board Specifications pg. 7
AC-AC Transducer Wiring
Connector J1 Pin-out pg. 8
AC-AC 7 kHz Board Specifications pg. 9
AC-AC 3 kHz Board Specifications pg. 9
Relay Option Wiring
Connector J3 Pin-out pg. 10
RS232C Option Specifications pg. 10
RS232C Option Wiring
Connector J3 Pin-out pg. 11
RS232C Option Specifications pg. 12-13
Relay/RS232C Option Wiring
Connector J3/J2 Pin-out pg. 14
Relay and RS232C Specifications pg. 10, 12-13
Operating Instructions
Switch Definitions pg. 15-16.
Function Definitions pg. 17
Device Calibration pg. 18-19
Programming Values pg. 20
Base Unit Specifications pg. 21-22
Troubleshooting Tips pg. 23
Mating Connector P/N's pg. 23
Warranty Terms and Technical Assistance pg. 24
TABLES \& FIGURES
Table 1: Mating Connectors pg. 5 Figure 1: Meter Installation pg. 5
Table 2: Jumper Position pg. 7 Figure 2: DC Board Setup pg. 7
Table 3: RS232C Connector Wiring pg. 13 Figure 3: RS232C Option pg. 13
Table 4: Baud Rate Switch Settings pg. 13 Figure DC-1: Wiring for VDC pg. 6
Table 5: Summary of Switch Definitions pg. 16 Figure DC-2: Wiring for $\pm \mathrm{VDC}$ pg. 6
Table 6: Troubleshooting Guide pg. 23
Table 7: Mating Connector P/N's pg. 23

- INTRODUCTION •

The Model 1003 Indicator provides complete interface for most AC-AC LVDTs, DCDTs and Trans-Tek Angular Displacement Transducers (ADT's). Equipped with the necessary mating connectors and mounting hardware, this fully programmable instrument consists of a base unit with several standard features, an integral personality board for each type of transducer, and any of several available options. A label affixed to the top of the case identifies the personality board and options installed in each indicator.

MODEL 1003 TRANSDUCER INDICATOR

FRONT PANEL FEATURES

UP/ZERO SWITCH (S2) - While in Program, increases flashing digit or shifts point left. While in Operate, acts as tare function.

QUICK

START

This overview provides quick start-up steps for operating your Model 1003 Indicator. Full details are described on the following pages.

Make all necessary wiring connections as described on the proceeding pages
Enter into Program Mode by pressing "PROG" button and press button until you see "CAL" screen appear. Set the value to the desired end of stroke displacement (inches/degrees). Step through each digit using the "STEP" button and increase or decrease to the appropriate digit using the " $U P$ " and "DOWN" buttons. Pressing the "PROG" button again will bring you to the "DECIMAL POINT" screen. Adjust the decimal point as appropriate to ensure the correct calibration value is set. When complete press the "PROG" button again to exit Program Mode. For more information on programming values see proceeding page 20.

Turn "CAL" and "ZERO" lights OFF by pressing corresponding buttons to activate voltmeter function
Locate NULL (or zero) position of the transducer - display will read nearly all " 0 "s (This is the center of the transducer's working range)

Displace the transducer to point in stroke where ZERO is desired.
(If you choose NULL position, you're already there!)
Hit the "ZERO" button on front panel.
Displace the transducer to point in stroke where programmed CAL value is desired (Be sure to stay within the working range of transducer)

Hit the "CAL" button on front panel
CALIBRATION IS NOW COMPLETE!

- INSTALLATION •

The Model 1003 Indicator is usually mounted in a panel cutout and wired directly to the rear panel connector(s). The recommended panel cutout dimensions are 1.772 " ($+.024,-.000$) by 3.622 " (+.032,-.000), with maximum corner radii of .04 ". The panel may be up to .25 " thick. For wiring to the connectors, 22 AWG insulated wires rated for at least 250 Vrms will meet all requirements. Please see Figure 1 below.

Table 1
Mounting - Rotate the pawl screws counterclockwise retracting them enough to overlap the thickness of the mounting panel. Insert the meter into the panel cutout and tighten the pawl screws.

Connectors - The appropriate mating connectors are supplied for each specific meter configuration. J1 provides connections for all standard functions, J2 for the Relay Option, and J3 for the RS232C Option. All connectors are illustrated in the wiring instructions on the following pages. Connector types are shown in Table 1.

Meter Configuration	Type of Connector
Base Unit	J1 mates with type Riacon 31009110
Base Unit with Relay Option	J1 mates with type Riacon 31009110
	J2 mates with type Riacon 31009112
Base Unit with RS232C Option	J1 mates with type Riacon 31009110
	J3 mates with type Riacon 31009104
 RS232C Options	J1 mates with type Riacon 31009110
	J2 mates with type Riacon 31009108
	J3 mates with type Riacon 31009104

To order replacement mating connectors, please see Table 7 on page 23 .

Figure 1

DC-DC TRANSDUCER CONFIGURATION

Equipped with DC-DC Personality Board
Designated by Model Number 1003-S-010x

Connector J1 Terminal Designations DC-DC Personality Board

1-1	$\begin{aligned} & -15 \text { VDC Supply } \\ & \text { RESET } \longrightarrow \\ & \text { Common } \end{aligned}$	NOTE: Reset automatically occurs on power up and can be manually reset by shorting J1-2 to J1-3.
J1-2		
J1-3		

J1-4 Analog Output
11-5 Transducer Output HI
J1-6 Not Used
J1-7 + 15 VDC Supply
J1-8 AC Line Power Earth Ground
11-9 AC Line Power Low
11-10 AC Line Power High

The Trans-Tek Series 240 DC-DC LVDT, Series 350 Gaging, or 600 Angular Displacement Transducers can be connected as illustrated in Figure DC-1. In this configuration, the transducer is powered +15 VDC. For higher sensitivity in the Series 240 LVDTS, the input terminal J1-1 can be substituted for J1-3, increasing the excitation voltage +30 VDC. Modification to the jumper position on the DC Board may be required. Please see next page for jumper position instructions.

Figure DC-1

Other DC powered transducers, such as a Trans-Tek Model 0605 Angular Displacement Transducer, require a dual bipolar power supply. For transducers requiring this excitation, use the configuration shown in Figure DC-2.

Figure DC-2

DC-DC TRANSDUCER BOARD SET-UP

These instructions are given to optimize the DC-DC Transducer Board for the transducer output. This is done by placing a jumper in one of five possible locations on this board. \{Warning: failure to properly locate the jumper could restrict the usable electrical stroke of the transducer.\} Unless otherwise requested at time of order, the jumper will be factory installed in Position \#1, allowing for the most transducer stroke. Please see Figure 2 below.

Table 2
When powered by the available 15 VDC or $\pm 15 \mathrm{VDC}$ excitation, determine the maximum output voltage from the transducer over its nominal working range (regardless of polarity).

Remove the four screws that secure the front panel to the case and slide the circuit board(s) out of the case. Based on the maximum output voltage, determine the proper jumper position using Table 2.

Max. Output (VDC)	Jumper Position
9.3 to 13.2	$\# 1$
7.4 TO 9.3	$\# 2$
5.0 TO 7.4	$\# 3$
4.0 TO 5.0	$\# 4$
less than 4.0	$\# 5$

After making the appropriate changes, reassemble board(s) and front panel into case.

DC-DC TRANSDUCER BOARD SPECIFICATIONS

This board provides excitation voltage to the transducer and coarse scaling of the transducer output. Input voltage choices include 15 VDC or ± 15 VDC.

Supply Voltage to Transducer:	$\pm 15 \mathrm{VDC} \pm 5 \%$ at 30 mA maximum
Transducer Output Voltage Range:	-13.2 to +13.2 VDC
Temperature Coefficient of Sensitivity:	$\pm .006 \% /{ }^{\circ} \mathrm{F}$ typical $\left(\pm .01 \% /{ }^{\circ} \mathrm{C}\right)$
Temperature Coefficient of Zero:	$\pm 2 \% \mathrm{LSD}$ maximum, over rated operating temperature range adjustable to
Analog Output Voltage:	5.0 VDC when the transducer output is between 2.9 and 13.2 VDC ; polarity
	is the same as that of transducer.
Analog Output Impedance:	2 ohms maximum; output is short circuit protected and can operate into
	loads of at least 1000 ohms without distortion.
Analog Output Noise and Ripple:	2 mVrms maximum
Analog Output Frequency Response:	$375 \mathrm{~Hz}(-3 \mathrm{db}$ point) nominal
Analog Output Stability:	$.002 \%$ Full Stroke after 30 minute warm-up

Figure 2

AC-AC TRANSDUCER CONFIGURATION

Equipped with AC-AC Personality Board
Designated by Model Number 1003-S-020x, -030x or -040x

Switch S5 locks out front panel switches S1 through S4 when turned "ON".

$$
\begin{aligned}
& \text { Failure to properly } \\
& \text { ground the case may } \\
& \text { result in meter failure. }
\end{aligned}
$$

Connector J1 Terminal Designations AC-AC Personality Board

J1-1	Transducer Output	NOTE: Reset automatically occurs
J1-2	RESET \longrightarrow	on power up and can be manually
J1-3	Common	reset by shorting J1-2 to J1-3.
J1-4	Analog Output	
J1-5	Transducer Output	
J1-6	Not Used	
J1-7	Transducer Excitation	
J1-8	AC Line Power Earth G	round
J1-9	AC Line Power Low	
J1-10	AC Line Power High	

Figure AC-1

The Trans-Tek Series 210-220, 230, 310-320 Gaging, and 330 Gaging AC-AC LVDT are connected as shown in Figure AC-1. In this configuration, an AC excitation of either 3 kHz or 7 kHz and 1.7 VRMS is provided. The particular version, indicated by the meter's " S " number ($-020 x,-030 x,-040 x$), is determined by knowing which specific transducer will be used with the indicator.

AC-AC 7 kHz BOARD SPECIFICATIONS

This item provides the oscillator and demodulator circuitry to operate with AC-AC LVDTs at 7 kHz .
Oscillator Frequency: $\quad 7 \mathrm{kHz} \pm 10 \%$ (factory set, range 1 to 20 kHz)
Oscillator Output Voltage:
1.7 Vrms $\pm 4 \%$

Oscillator Load:
Demodulator Input:
100 ohms minimum
Demodulator Non-linearity:
.973 Vrms maximum, to avoid distortion
$\pm .05 \%$ maximum
Temperature Coefficient of Sensitivity: $\quad \pm .006 \% /{ }^{\circ} \mathrm{F}$ typical $\left(\pm .01 \% /{ }^{\circ} \mathrm{C}\right)$
Temperature Coefficient of Zero: ± 2 LSD maximum, over rated operating temperature range
Analog Output Voltage:
Analog Output Impedance:
Analog Output Noise and Ripple:
Analog Output Frequency Response:
Analog Output Stability:

Adjustable to 5.0 VDC when the LVDT output is .840 Vrms ($\pm 9 \%$)
2 ohms maximum; output is short circuit protected and can operate into loads of at least 1000 ohms without distortion 2 mVrms maximum
$300 \mathrm{~Hz}(-3 \mathrm{db}$ point) nominal
. 002% Full Stroke after 30 minute warm-up

AC-AC 3 kHz BOARD SPECIFICATIONS

This item has the same specifications as the AC-AC 7 kHz Board described above, except the oscillator frequency is 3 kHz instead of 7 kHz .

RELAY OPTION CONNECTIONS

Designated by Model Number 1003-S-0x01

Connector J2 Terminal Designations
 Relay Option

J2-1	Common (SPH1)
J2-2	N.O. (SPH1)
J2-3	N.C. (SPH1)
J2-4	Common (SPH2)
J2-5	N.O. (SPH2)
J2-6	N.C. (SPH2)
J2-7	Common (SPL1)
J2-8	N.O. (SPL1)
J2-9	N.C. (SPL1)
J2-10	Common (SPL2)
J2-11	N.O. (SPL2)
J2-12	N.C. (SPL2)

Relay Option provides contact closures at rear panel connector J2, synchronized with front panel Set Point Lamps: HI 1, HI 2, LO 1, LO 2. When the front lamp is lit, the respective relay coil is powered. Each relay has one normally open (N.O.), one normally closed (N.C.) and one common contact.

Note: On meters with RS232C and Relay Options, the normally closed (N.C.) contacts are not included.

Relay Option Specifications

Contact Ratings:	250 Vrms maximum, up to 4 amperes maximum 30 VDC maximum, up to 3 amperes maximum
Response Time:	On $=8$ mseconds nominal Off $=5$ mseconds nominal

RS232C OPTION CONNECTIONS

Designated by Model Number 1003-S-0x02

Connector J3 Terminal Designations RS232C Option

J3-1	RS232C Data Terminal Ready (DTR)
J3-2	RS232C Ground (GND)
J3-3	RS232C Data Set Ready (DSR)
J3-4	RS232C Transmit Data (TXD)

RS232C Option provides RS232C serial communication (transmit only) with handshake, transmitting display information.
*** Please see pages $12 \& 13$ specifications on RS232C Board ${ }^{* * *}$

RS232C Option Specifications

Mode: Half Duplex, Transmit Only
Handshake: DSR (data set ready), DTR (data terminal ready) and TXD (transmit data signal)
Rate: Factory supplied at 1200 baud unless otherwise ordered. Rate can be field set to $600,1200,2400$, 4800, 9600 and 19200 baud via the DIP switch assembly on the top circuit board inside the meter (please see Figure 3 next page). To reach the DIP assembly, remove the four screws that secure the front panel to the case and slide the circuit boards out of the case.

Data Format: No parity bit, 1 stop bit, 8 data bits
Data Transmission: Data is transmitted in ASCII characters in the following sequence
Sign: plus or minus (1'st word)
Magnitude: \quad MSD first (2^{\prime} 'nd through 6 'th word)
Decimal Point: Exponent (7 'th word)
EOL: Control Z (8'th word)
Decimal position is transmitted as power of 10 exponent
X.XXXX 4 (ASCII)
XX.XXX 3 (ASCII)
XXX.XX 2 (ASCII)

XXXX.X 1 (ASCII)
Data Update: Data is transmitted once per conversion cycle, if the Data Set Ready (DSR) line is True. Once transmission is started, all 8 words are transmitted independently of DSR (i.e., the state of DSR is ignored until all words are transmitted).

Data Terminal Ready (DTR): DTR is set True when the meter is active.

Figure 3: RS232C Option - Switch Settings and Pin Designations

Table 3

RS232C CONNECTOR WIRING		
TRANSDUCER INDICATOR	$\mathbf{2 5}$ PIN	9 PIN
TXD J3-4	3 RXD	2 RXD
DSR J3-3	20 DTR	4 DTR
GND J3-2	7 GND	5 GND
DTR J3-1	6 DSR	6 DSR

Table 4

S7: BAUD RATE SWITCH SETTINGS				
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	RATE
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	600
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1200
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	2400
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	4800
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	9600
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	19200
OFF (UP) $=\mathbf{0}$	ON (DOWN) $=\mathbf{1}$			
FACTORY SET AT 1200 BAUD RATE				

Relay/RS232C OPTION CONNECTIONS

Designated by Model Number 1003-S-0x03

Connectors J2 \& J3 Terminal Designations Relay/RS232C Option

J3	J3-1
	J3-2
	J3-3
	J3-4
J2	J2-1
	J2-2
	J2-3
	J2-4
	J2-5
	J2-6
	J2-7
	J2-8

RS232C Data Terminal Ready (DTR)
RS232C Ground (GND)
RS232C Data Set Ready (DSR)
RS232C Transmit Data (TXD)
Common (SPH1)
N.O. (SPH1)

Common (SPH2)
N.O. (SPH2)

Common (SPL1)
N.O. (SPL1)

Common (SPL2)
N.O. (SPL2)

These combined options provide contact closures and serial communication. For this version, Normally Closed (N.C.) contacts are not included. Please see full specs for both options on Pages 12-14.

- SWITCH DEFINITIONS •

Front Panel View

Table 5: Summary of Switch Definitions

FRONT PANEL SWITCH	WHILE IN "PROGRAM"	WHILE IN "OPERATE"
Prog/Oper (S1)	advances to next program step	displays current input value

Please see next page for more detailed definitions

- SWITCH DEFINITIONS •

Prog/Oper Switch (S1) - S1 places the indicator in PROGRAM or OPERATE mode. When in PROGRAM mode, pressing S1 advances the readout to the next program step. While at each step, a display prompt (identifying the parameter) is shown in parentheses for approximately one second. This prompt is then immediately followed by the actual value for that parameter. Starting from OPERATE, the sequence of steps is as follows:

PROGRAM STEP
Set Point 1 High
Set Point 1 Low
Set Point 2 High
Set Point 2 Low
Hysteresis High
Hysteresis Low
Calibration Value
Decimal Point
Exit to OPERATE Mode

DISPLAY PROMPT
(SPH1)
(SPL1)
(CAL)
(dP)

Pressing S1 once more after DECIMAL POINT step returns the instrument to OPERATE mode, displaying the current value of the input.
$\mathbf{U p} /$ Zero Switch (S2) - S2 serves two functions, depending on the status of S1 (PROGRAM or OPERATE). While in PROGRAM mode, S 2 increments the flashing digit or shifts the DECIMAL POINT left. While in OPERATE mode, S2 becomes the ZERO SWITCH: pressing S2 when the ZERO LAMP is not lit will light the lamp and subtract that display value from all subsequent readings. Pressing S2 when the ZERO LAMP is lit will extinguish the lamp and cancel the subtraction.

Down/Cal Switch (S3) - S3 serves two functions, depending on the status of S1 (PROGRAM or OPERATE). While in PROGRAM mode, S3 decrements the flashing digit or shifts the DECIMAL POINT right. While in OPERATE mode, S3 becomes the CAL SWITCH: pressing S3 when the CAL LAMP is unlit will light the CAL LAMP and scale the display to read the CALIBRATION VALUE. Pressing S3 when the CAL LAMP is lit will extinguish the CAL LAMP and return the indicator to displaying the base unit input voltage directly in volts. (NOTE: disregarding display decimal point position, the base unit nominally displays 10000 when its input is 1 VDC.)

Step/Hi/Low Switch (S4) - S4 serves two functions, depending on the status of S1 (PROGRAM or OPERATE). While in PROGRAM Mode, S 4 selects the display digit. The selected digit will flash and will respond to increasing by S2 or decreasing by S3. While in OPERATE mode, pressing S4 displays the prompt "HI" for one second followed by the High reading for one second. It will automatically continue with the prompt "LO" for one second and the Low reading for one second, before finally returning to the standard display.

Lockout Switch (S5) - Placing the rear panel toggle switch S5 in the up position disables switches S1 through S4.

- FUNCTION DEFINITIONS •

(Descriptions given for OPERATE mode)
Set Point 1 High (SPH1) - SPH1 is a value from -99999 to 99999, entered in PROGRAM mode. When the display value is more positive than the SPH1, the HI 1 LAMP is lit. This condition persists until the display value decreases to less than SPH1, minus the HYSTERESIS HIGH (HH) value.

Set Point 1 Low (SPL1) - SPL1 is a value from -99999 to 99999, entered in PROGRAM mode. When the display value is more negative than the SPL1, the LO 1 LAMP is lit. This condition persists until the display value increases to more than SPL1, plus the HYSTERESIS LOW (HL) value.

Set Point 2 High (SPH2) - SPH2 is a value from -99999 to 99999, entered in PROGRAM mode. When the display value is more positive than the SPH2, the HI 2 LAMP is lit. This condition persists until the display value decreases to less than SPH2, minus the HYSTERESIS HIGH (HH) value.

Set Point 2 Low (SPL2) - SPL2 is a value from -99999 to 99999, entered in PROGRAM mode. When the display value is more negative than the SPL2, the LO 2 LAMP is lit. This condition persists until the display value increases to more than SPL2, plus the HYSTERESIS LOW (HL) value.
$\underline{\text { Hysteresis High }(\mathbf{H H})}$ - HH is a value from 00 to 99, entered in PROGRAM mode, which applies to both high set points (reference SPH1 and SPH2).

Hysteresis Low (HL) - HL is a value from 00 to 99 , entered in PROGRAM mode, which applies to both low set points (reference SPL1 and SPL2).

Calibration Value (CAL) - CAL is a user value from 0 to 99999 , entered in the PROGRAM mode. [Warning: values above 20000 may compromise stability.\} When the CAL SWITCH is pressed (lighting the CAL LAMP), the instrument scales the display value to equal the CALIBRATION VALUE. This also sets the scale factor between the input signal voltage and the display until the CAL SWITCH is pressed again.

Decimal Point (dP) - In PROGRAM mode, dP positions the display decimal point between any of the five digits or completely removes the decimal point from the display.

Hi/Low - The HI and LO values are the maximum and minimum values of the displayed readings (in operate mode) from the last reset. Reset occurs when the meter is powered up, or by shorting pin J1-2 to J1-3. (Please see wiring instructions on pages 7 or 9)

NOTE: all functions above are stored in nonvolatile memory

- OPERATING INSTRUCTIONS •

CALIBRATION

Calibration should be performed when the meter is first put into service or when the transducer is changed in any way. It should also be calibrated when the instrument has been repaired or modified. Periodic calibration is recommended to account for unexpected system changes.

Proper calibration is conducted as a system, with the transducer connected to the meter and after the system has been powered for at least 30 minutes.

Scaling the Cal Value over the Transducer Stroke

The Model 1003 Indicator allows the user to display nearly any reading over the working range of the transducer. This is accomplished by first establishing a Calibration Value.

To set the Calibration Value, press the "PROG" button on the meter until you reach the "CAL" screen.
Set the Calibration Value to the displacement (inches/degrees) you wish to have at the end of stroke.
Press "PROG" button again to proceed to the "DECIMAL POINT" screen where you will adjust the decimal point accordingly to match the desired Calibration Value. Press the "PROG" button again to exit Program Mode and enter Operate Mode. Additional information for setting programming values can be found on page 20.

The following steps show how to display this Cal Value for the desired measurement range of the transducer.

After confirming the unit is in Operate Mode, press the Zero and Cal Switches to extinguish the Cal and Zero Lamps
This initializes the base unit, creating a voltmeter. In this mode, display values outside the range -20000 to +20000 may cause all digits to blink simultaneously. This condition clears when returned within range. For more information, please see Overrange Note on next page.

Scaling for \pm output

Position the transducer so that the display reads 0000 (or as close as possible)
This is the transducer's null position (the decimal point will appear as programmed).

\longrightarrow Press the Zero Switch

The Zero Lamp will light and the display will read 0000, making this point the center of the msmt. range.
Using a measuring device, displace the transducer to the desired point in the stroke In most cases, this point is at one end or the other of the transducer's working range.

This will be the end of the measurement range.
\rightarrow Press the Cal Switch
The Cal Lamp will light and the meter is scaled to display \pm the Cal Value from one end of the measurement range to the other

CALIBRATION IS NOW COMPLETE!

If the Cal Value was entered as a positive number, the output will begin as positive at this point If the Cal Value was entered as a negative number, the output will begin as negative at this point.

Scaling for a single-ended output

Position the transducer so that the display reads 0000 (or as close as possible)

This is the transducer's null position (the decimal point will appear as programmed).
\rightarrow Using a measuring device, displace the transducer to the desired point in the stroke In most cases, this point is at one end or the other of the transducer's working range. This will be the beginning of the measurement range for this setup.

The Zero Lamp will light and the display will read 0000.
\longrightarrow Displace the transducer to a second desired point in the stroke
In most cases, this second point is at the opposite end of the transducer's working range. This will be the end of the measurement range.

The Cal Lamp will light and the meter is scaled to display between 0 and the Cal Value from one end of
the measurement range to the other.
CALIBRATION IS NOW COMPLETE!
If the Cal Value was entered as a positive number, the scaled output will be all positive.
If the Cal Value was entered as a negative number, the scaled output will be all negative.

[^0]
PROGRAMMING VALUES

After applying line power to the Model 1003 Indicator, you may begin programming the High/Low Set Points, Hysteresis Points, Cal Value and Decimal Point using the controls on the front panel.

Press the Prog/Oper Switch to advance through each program step (listed below)
At each step, the display prompt is shown for about 1 second, followed by the actual value in memory
\longrightarrow You will be prompted to enter values for each program step:
(All values are held in nonvolatile memory)

Which Keys to Use Up Switch increases flashing digits Down Switch decreases flashing digit Step Switch selected the next flashing digit.	SPH1 SPL1 SPH2 SPL2	Setpoints Enter value between -99999 and 99999
While at Decimal Point Up Switch moves DP left Down Switch moves DP right	$\begin{aligned} & \text { HH } \\ & \text { HL } \end{aligned}$	Hysteresis Points Enter value between 00 and 99
Hint: Displaying the Negative Sign The negative sign appears while decrementing the digits from 9-0-1 in the first LED space to the left.	Cal DP	Calibration Value Enter value between 00000 and 99999 Note: a number less than 20000 is recommended The Decimal Point may be located between any of the digits or eliminated altogether

BASE UNIT

The base unit is a line-powered DC voltmeter with the following features:
Operates on 115 VRMS, 50/60 Hz power line
± 2 VDC analog output
5 digit, high contrast, LED display
Front panel programming
Programmable set points (2 high, 2 low) with front panel status lamps
Programmable hysteresis values
Programmable calibration value with front panel status lamp
Push button tare (zero) with front panel status lamp
Programmable decimal point position
Peak high and low value display
Rear panel lockout switch to disable front panel switches
Splash resistant front panel with membrane switches
Rugged metal case with RFI shielding

PERSONALITY BOARDS

Each meter includes one of four personality boards to interface with a specific type of transducer.
AC-AC LVDT (7 kHz) Board - For AC-AC LVDTs which operate at 7 kHz (Phase Angle $<10^{\circ}$)
AC-AC LVDT (7 kHz) Board - For AC-AC LVDTs which operate at 7 kHz (Phase Angle $>10^{\circ}$)
AC-AC LVDT (3 kHz) Board - For AC-AC LVDTs which operate at 3 kHz
DC-DC LVDT Board - For DC-DC LVDTs and Trans-Tek ADTs which operate at 15, 30 or $\pm 15 \mathrm{VDC}$.

OPTIONS

The following options are available with each meter:
Relay Option - Provides contact closures at the rear panel connector, synchronized with the front panel Set Point Status Lamps.

RS232C Option - Provides RS232C serial communications (transmit only) with handshake, transmitting the display value.

Relay/RS232C Option - Combines the contact closures of the Relay Option and the communications of the RS232C Option above.

BASE UNIT SPECIFICATIONS

Environmental

Operating Temp. Range:
Storage Temp. Range:
Splash Proof Front Panel
Anodized Aluminum Case

Mechanical

Case Size:
Front Panel:
Panel Cut Out:
Display:
Rear Panel Connectors:
Front Panel Membrane Switches

Input Power

Input Voltage:
Input Current:

Display

Resolution:
Accuracy:
Conversion Rate:
Accuracy Stability:
Zero Stability:

Fixed Functions

Tare (Zero):
Cal (Calibrate):
Lock Out Switch:
Hi/Lo Reading Recall:
Set Points:
$+31^{\circ} \mathrm{F}$ to $+131^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
$-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
$1.72 " \mathrm{H}(43.7 \mathrm{~mm}), 3.56 " \mathrm{~W}(90.4 \mathrm{~mm}), 5.0 " \mathrm{~L}(127 \mathrm{~mm})$
$1.91 " \mathrm{H}(48.5 \mathrm{~mm}), 3.8 " \mathrm{~W}(96.5 \mathrm{~mm}), .1 " \mathrm{THK}(2.54 \mathrm{~mm})$
$1.77 " \mathrm{H}(45 \mathrm{~mm}), 3.62 " \mathrm{~W}(91.9 \mathrm{~mm})$, up to $.25 " \mathrm{THK}(6.35 \mathrm{~mm})$
5 Digit, $.4 " \mathrm{H}(10.2 \mathrm{~mm})$ LED, polarity sign for Negative only
type Riacon 310091 Series
$115 \mathrm{Vrms} \pm 10 \%$ at $50 / 60 \mathrm{~Hz}$
approx. . 05 ampere

1 Part in 20000
$\pm .01 \%$ Reading \pm LSD
2 Readings/Second ($500 \mathrm{msec} /$ update)
$\pm .1 \%$ Reading ± 1 LSD for 120 Days (at $+77^{\circ} \mathrm{F},+25^{\circ} \mathrm{C}$)
within ± 2 Digits for 120 Days (at $+77^{\circ} \mathrm{F},+25^{\circ} \mathrm{C}$)
automatic push button Zero
automatic push button Cal (value programmable by user) accessible through rear panel (locks out front panel membrane switches) push button recall at front panel two programmable Hi set points with programmable hysteresis two programmable Lo set points with programmable hysteresis front panel status lamp for each set point

Personality Board

In addition to the specifications given for the Base Unit above, additional specs apply to this meter, depending on the installed Personality Board. Unless otherwise noted, the total specification is the sum of the specs for the Base Unit plus installed Personality Board

Table 6: Troubleshooting Guide

Symptom or Problem Experienced	Possible Cause and Solution
Display digits flashing	Meter overranged - check jumper position on DC board (pg 8)
No display	Check wiring to rear panel connector(s) (pgs 7, 9) Check AC power connection (pgs 7, 9)
Display on, but no change with transducer core movement	Check wiring to rear panel connector(s) (pgs 7, 9) Verify operation of transducer
Unable to find zero or null position of transducer	Check wiring to rear panel connector(s) (pgs 7, 9) Verify ZERO LAMP is off (see "Up/Zero Switch" pg 18)
Readings are unstable	Verify CAL VALUE is less than 20000 (see "Cal Value" pg 19)
Meter is losing programmed parameters	Check pin J1-2 for possible connection to pin J1-3 (pgs 7, 9)
Static electricity shorting display	Inadequate case ground (see "J1-8 Connection" pgs 7, 9)

Table 7: Replacement Mating Connector P/Ns

Meter Configuration	Type of Connector	Trans-Tek Connector P/Ns
Base Unit	J1 mates with type Riacon 31009110	C003-0053 Connector Assembly
Base Unit with Relay Option	J1 mates with type Riacon 31009110	C003-0053 Connector Assembly
	J2 mates with type Riacon 31009112	C003-0054 Connector Assembly
Base Unit with RS232C Option	J1 mates with type Riacon 31009110	C003-0053 Connector Assembly
	J3 mates with type Riacon 31009104	C003-0055 Connector Assembly
	J1 mates with type Riacon 31009110	C003-0053 Connector Assembly
	J2 mates with type Riacon 31009108	C003-0056 Connector Assembly
	J3 mates with type Riacon 31009104	C003-0055 Connector Assembly

- WARRANTY TERMS•

All TRANS-TEK products are warrantied against defective material and workmanship for one year

- TECHNICAL ASSISTANCE •

For technical support on the Model 1003 Indicator or any TRANS-TEK product, please contact our Sales Engineering Dept.

TOLL FREE 1-800-828-3964

(Fax: 860-872-4211)

Visit Our Web Site!
http://transtekinc.com

Route 83, P.O. Box 338, Ellington, CT 06029

[^0]: OVERANGE NOTE: Similar overrange conditions may occur in Operate Mode, regardless of the display reading. This happens whenever the display operates outside the equivalent initialized range of -20000 to +20000 . If an overrange condition is reached during calibration, it MUST be removed before proceeding, to avoid inaccurate readings.

